### Development of indices of biotic integrity for high-gradient wadeable rivers and headwater streams in New Jersey

John Vile and Brian Henning

New Jersey Department of Environmental Protection Bureau of Freshwater and Biological Monitoring





# Northern Fish IBI



AT

IBI Station

**DEP** Water Region

- $\succ$  Developed by U.S. EPA Region 2
- BFBM initiated monitoring in 2000
- BFBM completed metric refinement in 2005 & 2016
- Currently in 4th round of monitoring



# Southern Fish IBI



**IBI** Station

**DEP** Water Region

- Pilot project to develop a fish IBI started by NJ Fish & Wildlife
- BFBM completed scoring criteria and validation finalized in 2012
- Currently evaluating Outer Coastal Plain

## Headwaters IBI

**DEP** Water Region

#### THE ACADEMY OF NATURAL SCIENCES of DREXEL UNIVERSITY

Pilot study completed by ANS
 BFBM initiated monitoring in 2014
 BFBM completed metric refinement in 2016

### Fish IBI Monitoring Network

### Fixed Sites N=210

• Revisit every 5 years, track long-term trends.

### Sentinel Sites N=21

• Sentinel sites are sampled routinely to assess natural variability and environmental change.

### **Probabilistic Sites** N=50

• Probabilistic sites were generated using a Generalized Random Tessellation Stratified (GRTS) survey design to provide a statistical Statewide survey of the Fish Index of Biotic Integrity Network.

# U.S. EPA Regional Monitoring Network N=3

- RMN sites have minimal or low levels of upstream human-related disturbance
- Biological, thermal, and hydrologic data are collected to quantify and monitor changes in baseline conditions, including climate change effects.



#### Assessing Biological Integrity in Running Waters A Method and Its Rationale

James R. Karr Kurt D. Fausch Paul L. Angermeier Philip R. Yant Isaac J. Schlosser



**Illinois Natural History Survey** Special Publication 5 September 1986



# Rapid Bioassessment Metrics

### I. Species richness and composition metrics

- No. Fish Species
- No. Benthic Insectivores
- No. Trout & Centrarchid Species
- No. Intolerant Species
- **Proportion of White Suckers**

### **II. Trophic composition metrics**

Proportion of GeneralistsProportion of Insectivorous CyprinidsProportion of Trout or Piscivores

## III. Fish abundance and condition metrics

- No. Specimens
- **Proportion with Anomalies**

#### **Revised Generalists**



| FIBI059 - Pascack R<br>Date Sampled - 7/30 | iver @ Emerson Rd<br>//2003    | Excellent                  | Good  | Fair  | Poor |
|--------------------------------------------|--------------------------------|----------------------------|-------|-------|------|
| # of Fish Cressies                         |                                |                            |       | Score |      |
| # of Fish Species                          |                                |                            |       | 2     |      |
| # of Benthic Insectivo                     | orous Species (BI)             |                            |       | 3     |      |
| # of Trout and Centra                      | urchid Species (trout, bass,   | sunfish, crappie)          |       | 5     |      |
| # of Intolerant Specie                     | es (IS)                        |                            |       | 1     |      |
| Proportion of Individu                     | als as White Suckers           |                            |       | 5     |      |
| Proportion of Individu                     | als as Generalists (carp, cree | ek chub, banded killifish, |       | 5     |      |
| goldfish, fathead minnow,                  | green sunfish)                 |                            |       |       |      |
| Proportion of Individu                     | als as Insectivorous Cypri     | nids (I and BI)            |       | 1     |      |
| Proportion of Individu                     | als as Trout *w                | rhichever gives better     | score |       |      |
| Proportion of Individu                     | als as Pisciviores (Excludir   | ng American Eel)*          |       | 3     |      |
| Number of Individuals                      | s in Sample                    |                            |       | 3     |      |
| Proportion of Individu                     | als w/disease/anomalies (e     | excluding blackspot)       |       | 5     |      |
| Total                                      |                                |                            |       | 36    |      |
| Stream R                                   | ating                          |                            |       |       |      |
| 45-50                                      | Excellent                      |                            |       |       |      |
| 37-44                                      | Good                           |                            |       |       |      |
| 29-36                                      | Fair                           |                            |       |       |      |
| 10-28                                      | Poor                           |                            |       |       |      |

#### A Structured Approach for Developing Indices of Biotic Integrity: Three Examples from Streams and Rivers in the Western USA

THOMAS R. WHITTIER\* AND ROBERT M. HUGHES Department of Fisheries and Wildlife, Oregon State University, 200 Southwest 35th Street, Corvallis, Oregon 97333, USA

#### JOHN L. STODDARD

U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 Southwest 35th Street, Corvallis, Oregon 97333, USA

#### GREGG A. LOMNICKY

Dynamac Corporation, 200 Southwest 35th Street, Corvallis, Oregon 97333, USA

#### DAVID V. PECK

U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 Southwest 35th Street, Corvallis, Oregon 97333, USA

#### ALAN T. HERLIHY

#### Department of Fisheries and Wildlife, Oregon State University, 200 Southwest 35th Street, Corvallis, Oregon 97333, USA

Abstract.--In the late 1990s the Environmental Monitoring and Assessment Program of the U.S. Environmental Protection Agency developed a structured set of tests to evaluate and facilitate selection of metrics for indices of biotic integrity (IBIs). These IBIs were designed to be applicable across multistate regions as part of a national assessment of all U.S. waters. Here, we present additional steps in, and refinements to, that IBI development process. We used fish and amphibian assemblage data from 932 stream and river sites in 12 western U.S. states to develop IBIs for Mountains, Xeric, and Plains ecoregions. We divided 237 candidate metrics into nine metric classes representing different attributes of assemblage structure and function. For each ecoregion we sequentially eliminated metrics by testing metric range, signal-to-noise ratios, responsiveness to disturbance, and redundancy to select the best metric in each class. The IBIs for the Mountains and Plains each had seven metrics and the Xeric IBI had five. In the Mountains, half of the estimated stream length that could be assessed had IBI scores greater than 62 (out of 100). In the Xeric and Plains, half the stream length had scores no greater than 50 and no greater than 37, respectively. An estimated 16% of Xeric stream length had scores greater than 62 (the median for the Mountains), while 5% of Plains stream length had scores that exceeded 62. This IBI development process is less subjective and more streamlined and has more clearly defined criteria for metric selection and scoring than those used in the past, while maintaining a strong ecological foundation.

Twenty-five years ago, when the condition of streams and rivers was largely assessed by water quality criteria, Karr (1981) proposed an index of biotic integrity (IBI). It was designed to quantify characteristics of stream fish assemblages to assess biotic integrity, which is defined by Frey (1977) and Karr and Dudley (1981) as the "capability of supporting and maintaining a balanced, integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of the natural habitat of the region." Since that time, IBIs have become fairly standard tools for assessment of stream condition, particularly to address aquatic life uses (Davis and Simon 1995; Simon 1999a). The original IBI, which was developed for fish assemblages in Midwestern warmwater streams, has been modified for other regions and continents (Miller et al. 1988; Hughes and Oberdorff 1999; Karr 2006), coldwater streams (Lyons et al. 1996; Hughes et al. 2004), plains streams (Bramblett and Fausch 1991; Shearer and Berry 2002; Bramblett et al. 2005), large rivers (Hughes and Gammon 1987; Lyons et al. 2001; Emery et al. 2003; Mebane et al. 2003; Yoder et al. 2005) and lakes (Minns et al. 1994; Drake and Pereira 2003). Others have used IBI concepts to develop multi-

<sup>\*</sup> Corresponding author: whittier.thom@epa.gov

Received May 29, 2006; accepted January 3, 2007 Published online April 26, 2007

## Structured Approach to IBIs

Whittier, T.R., Hughes, R.M., Stoddard, J.L., Lomnicky, G.A., Peck, D.V., Herlihy, A.T., 2007. A structured approach for developing indices of biotic integrity: three examples from western USA streams and rivers. Trans. Am. Fish. Soc. 136, 718-735.

- Developed set of tests to evaluate and select metrics in a streamlined manner that is less subjective
- When a metric fails a test, it is eliminated
- 1. Range Test
- 2. Signal to noise
- 3. Correlation with natural gradients (drainage size, gradient)
- 4. Responsiveness test
- 5. Redundancy
- 6. Range test for metric scores
- 7. Metric scoring and evaluation

TABLE 1.—Metric classes used to develop indices of biotic integrity in the western USA.

| Class        | Description                                                                                                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat      | Preferred habitat for each vertebrate species (e.g., benthic, water column, or hider)                                                             |
| Tolerance    | General tolerance to common anthropogenic,<br>physical, and chemical stressors (sensitive,<br>intermediate, tolerant, or very tolerant)           |
| Trophic      | Primary source of nutrition for each vertebrate<br>species as an adult (herbivore, invertivore,<br>invertivore–piscivore, piscivore, or omnivore) |
| Reproductive | Reproductive habit for each vertebrate species (e.g., lithophil, nest builder, or crevice spawner)                                                |
| Composition  | The representation of different taxonomic groups<br>(e.g., family) in the assemblage                                                              |
| Richness     | The number of different kinds of taxa                                                                                                             |
| Life history | The general life history strategy for each vertebrate<br>species (e.g., migrating [vagile], long-lived, etc.)                                     |
| Aliens       | Whether each vertebrate species is native or<br>introduced in the region where it was collected                                                   |
| Abundance    | The number of individuals of an assemblage,<br>taxonomic group, or guild collected                                                                |

# **Ecological Designations**

| Species name           |                         | Origin | Temperature | Tolerance | Trophic | Reproduction | Stream Flow |
|------------------------|-------------------------|--------|-------------|-----------|---------|--------------|-------------|
| Fish                   |                         |        |             |           |         |              |             |
| A. brook lamprey       | Lampetra appendix       | Ν      | C-W         | Ι         | FF      | Litho        | Rheo        |
| American eel           | Anguilla rostrata       | Ν      | W           | Т         | TC      |              |             |
| Banded killifish       | Fundulus diaphanus      | Ν      | W           | Т         | GF      |              |             |
| Black crappie          | Pomoxis nigromaculatus  | А      | W           | М         | TC      |              |             |
| Blacknose dace         | Rhinichthys atratulus   | Ν      | C-W         | Μ         | GF      | Litho        | Rheo        |
| Bluegill               | Lepomis macrochirus     | А      | W           | Μ         | GF      |              |             |
| Bluespotted Sunfish    | Enneacanthus gloriosus  | Ν      | W           |           | Ι       |              |             |
| Bluntnose minnow       | Pimephales notatus      | А      | W           | Т         | GF      |              |             |
| Bridle shiner          | Notropis bifrenatus     | Ν      | W           | Μ         | Ι       |              |             |
| Brook trout            | Salvelinus fontinalis   | Ν      | С           | Ι         | TC      | Litho        | Rheo        |
| Brown bullhead         | Ameiurus nebulosus      | Ν      | W           | Μ         | GF      |              |             |
| Brown trout            | Salmo trutta            | А      | С           | Ι         | TC      | Litho        |             |
| Chain pickerel         | Esox niger              | Ν      | W           | Μ         | TC      |              |             |
| Comely Shiner          | Notropis amoenus        | Ν      | W           | М         | I       | Litho        |             |
| Common carp            | Cyprinus carpio         | А      | W           | Т         | GF      |              |             |
| Common shiner          | Luxilis cornutus        | Ν      | C-W         | Μ         | Ι       | Litho        |             |
| Creek chub             | Semotilus atromaculatus | Ν      | C-W         | Μ         | GF      | Litho        |             |
| Creek chubsucker       | Erimyzon oblongus       | Ν      | W           | Μ         | BI      |              |             |
| Cutlips minnow         | Exoglossum maxillingua  | Ν      | W           | Ι         | BI      | Litho        |             |
| Eastern mudminnow      | Umbra pygmaea           | Ν      | W           | Μ         | GF      |              |             |
| Eastern silvery minnow | Hybognathus regius      | Ν      | W           | Μ         | Н       |              |             |



# Fish Assemblages

- 1. \*Redbreast Sunfish, \*Tessellated Darter, \*Green Sunfish, Rock Bass, Spottail Shiner, Yellow Bullhead, Bluegill, Banded Killifish, Redfin Pickerel
- 2. \*Longnose Dace, \*Fallfish, \*Margined Madtom,
  \*Smallmouth Bass, \*White Sucker, Shield Darter,
  American Brook Lamprey, Largemouth Bass
- 3. \*Brown Trout, Cutlips Minnow, American Eel
- 4. \*Blacknose Dace, \*Creek Chub
- \*Creek Chubsucker, \*Eastern Mudminnow, \*Brown Bullhead, \*Golden Shiner, Chain Pickerel, Pumpkinseed
- 6. \*Brook Trout, Slimy Sculpin

# Coldwater vs Cool/Warmwater

### Northern Fish Community



### Development of indices of biotic integrity for high-gradient wadeable rivers and headwater streams in New Jersey





John Vile and Brian Henning Water Monitoring & Standards Bureau of Freshwater and Biological Monitoring

### **Structured Approach to IBIs**

- Whittier, T.R., Hughes, R.M., Stoddard, J.L., Lomnicky, G.A., Peck, D.V., Herlihy, A.T., 2007. A structured approach for developing indices of biotic integrity: three examples from western USA streams and rivers. Trans. Am. Fish. Soc. 136, 718-735.
- Developed set of tests to evaluate and select metrics in a streamlined manner that is less subjective
- When a metric fails a test, it is eliminated
- 1. Range Test
- 2. Signal to noise
- 3. Correlation with natural gradients (drainage size, gradient)
- 4. Responsiveness test
- 5. Redundancy
- 6. Range test for metric scores
- 7. Metric scoring and evaluation

| TABLE     | 1. | -Metric   | classes | used       | to | develop | indices | of | biotic |
|-----------|----|-----------|---------|------------|----|---------|---------|----|--------|
| integrity | in | the weste | em USA  | <b>A</b> . |    |         |         |    |        |

| Class        | Description                                                                                                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat      | Preferred habitat for each vertebrate species (e.g.,<br>benthic, water column, or hider)                                                          |
| Tolerance    | General tolerance to common anthropogenic,<br>physical, and chemical stressors (sensitive,<br>intermediate, tolerant, or very tolerant)           |
| Trophic      | Primary source of nutrition for each vertebrate<br>species as an adult (herbivore, invertivore,<br>invertivore–piscivore, piscivore, or omnivore) |
| Reproductive | Reproductive habit for each vertebrate species (e.g., lithophil, nest builder, or crevice spawner)                                                |
| Composition  | The representation of different taxonomic groups<br>(e.g., family) in the assemblage                                                              |
| Richness     | The number of different kinds of taxa                                                                                                             |
| Life history | The general life history strategy for each vertebrate species (e.g., migrating [vagile], long-lived, etc.)                                        |
| Aliens       | Whether each vertebrate species is native or<br>introduced in the region where it was collected                                                   |
| Abundance    | The number of individuals of an assemblage,<br>taxonomic group, or guild collected                                                                |

## **NJ Metric Evaluation Process**

**Candidate Metrics** 

**FIBI (80)** 



## **NJ Metric Evaluation Process**

#### 1. Range Test

- Eliminated metrics with < 4 species (Richness metrics only)
- Eliminated metrics with >75% zero values or identical values
- 2. Signal to noise ratio of variance among sites (signal) to the variance of repeated visits to the same site (noise)
  - Eliminated metrics with S:N values less than 3
- 3. Correlation with natural gradients (drainage size, gradient)
  - Metrics with R<sup>2</sup> >.25 were adjusted
  - Predicted value = m\*log<sub>10</sub>(drainage area)+b
  - Adjusted value = mean of reference + observed- predicted
- 4. Responsiveness test
  - Correlation coefficients with land use, habitat, water chemistry variables
  - One-way ANOVA (Least Impaired vs. Most Impaired) 3 disturbance categories (LU/habitat)
  - Highest F-statistic in each class used as the primary criteria for selecting the strongest metric within each ecological class
- 5. Redundancy
  - Correlation coefficients of r = |0.75| was used as a cut-off for metric elimination
- 6. Range test for metric scores
  - Produced boxplots of Least Impaired vs. Most Impaired
- 7. Metric scoring and evaluation
  - Scored metrics scaled to range from 0-100 (continuous scoring)



| Metric                   | Signal/<br>Noise | Range | Max<br>Identical<br>Values | % Zero<br>Values | Correlation<br>w/ Pop<br>Density<br>n=114 | Correlation<br>w/ Forest<br>n=127 | Correlation<br>w/ IC<br>n=125 | Correlation<br>w/ Habitat<br>n=127 | F-Statisitic |
|--------------------------|------------------|-------|----------------------------|------------------|-------------------------------------------|-----------------------------------|-------------------------------|------------------------------------|--------------|
| Taxonomic Richness       |                  |       |                            |                  |                                           |                                   |                               |                                    |              |
| Richness                 | 3.38             | 3-24  | 11%                        | 0.0%             | -0.35                                     | 0.03                              | -0.25                         | 0.07                               |              |
| Non-Native Sp            | 2.82             | 0-8   | 25%                        | 0.8%             | -0.28                                     | 0.09                              | -0.20                         | 0.07                               |              |
| Adj Non-Native Sp        |                  |       |                            |                  | -0.21                                     | -0.01                             | -0.13                         | 0.01                               |              |
| Native Sp                | 3.00             | 2-20  | 14%                        | 0.0%             | -0.29                                     | -0.01                             | -0.22                         | 0.05                               |              |
| Coldwater Sp             | 11.12            | 0-4   | 53%                        | 53.0%            | -0.31                                     | 0.40                              | -0.35                         | 0.45                               |              |
| Coolwater Sp             | 5.83             | 0-13  | 20%                        | 0.8%             | -0.58                                     | 0.32                              | -0.58                         | 0.49                               |              |
| Adj Coolwater Sp         | _                |       |                            | _                | -0.53                                     | 0.24                              | -0.53                         | 0.46                               | 21.94        |
| Warmwater Sp             | 3.53             | 0-15  | 16%                        | 0.8%             | 0.06                                      | -0.32                             | 0.18                          | -0.39                              |              |
| Top Carnivore Sp         | 2.68             | 0-7   | 28%                        | 1.6%             | -0.42                                     | 0.31                              | -0.40                         | 0.33                               |              |
| Generalist Sp            | 2.97             | 2-12  | 21%                        | 0.0%             | 0.13                                      | -0.37                             | 0.24                          | -0.44                              |              |
| Benthic Insectivore Sp   | 5.87             | 0-6   | 30%                        | 2.4%             | -0.53                                     | 0.31                              | -0.52                         | 0.46                               |              |
| Intolerant Sp            | 14.43            | 0-6   | 29%                        | 28.6%            | -0.45                                     | 0.43                              | -0.50                         | 0.57                               | 35.98        |
| Tolerant Sp              | 6.02             | 1-8   | 24%                        | 0.0%             | 0.38                                      | -0.61                             | 0.48                          | -0.52                              | 41.47        |
| Intermediate Tolerant Sp | 2.98             | 0-17  | 14%                        | 0.8%             | -0.37                                     | 0.10                              | -0.29                         | 0.05                               |              |
| Rheophilic Sp            | 7.94             | 0-7   | 27%                        | 0.8%             | -0.47                                     | 0.31                              | -0.46                         | 0.55                               | 29.16        |
| Rheo-Bdace/Tdart Sp      | 7.36             | 0-5   | 31%                        | 27.6%            | -0.40                                     | 0.31                              | -0.40                         | 0.56                               | 31.04        |
| Lithophilic Sp.          | 6.17             | 0-12  | 15%                        | 0.8%             | -0.57                                     | 0.42                              | -0.60                         | 0.52                               | 43.99        |
| Native Lithophilic Sp.   | 3.36             | 0-9   | 28%                        | 0.8%             | -0.53                                     | 0.34                              | -0.53                         | 0.48                               | 33.36        |

#### Metrics failing for tests were eliminated

# Final Selection

|                                   | Correlation   | Correlation | Correlation | Correlation | Ref<br>Correlation |             |       |
|-----------------------------------|---------------|-------------|-------------|-------------|--------------------|-------------|-------|
|                                   | w/ Pop        | w/ Forest   | w/ IC       | w/ Habitat  | w/ Drainage        |             |       |
| Metric                            | Density n=127 | n=137       | n=137       | n=137       | n=23               | F Statistic | DE    |
| Taxonomic Richness                |               |             |             |             |                    |             |       |
| Intolerant Sp                     | -0.44         | 0.46        | -0.50       | 0.57        | 0.10               | 35.6        | 90.5% |
| Rheo-Tdart Sp                     | -0.39         | 0.36        | -0.41       | 0.56        | 0.19               | 39.7        | 76.2% |
| Rheo-Tdart % Rich                 | -0.35         | 0.46        | -0.42       | 0.62        | 0.00               | 45.9        | 100 % |
| Rheo-Bdace/Tdart Sp               | -0.37         | 0.33        | -0.37       | 0.53        | -0.12              | 37.1        | 76.2% |
| Thermal                           |               |             |             |             |                    |             |       |
| Adj%Coolwater Sp                  | -0.53         | 0.27        | -0.51       | 0.46        | -0.04              | 18.0        | 66.7% |
| Adj%NonTolerant Coolwater Sp      | -0.48         | 0.46        | -0.49       | 0.51        | 0.00               | 33.6        | 76.2% |
| Adj%Cold/NonTolerant Coolwater Sp | -0.50         | 0.51        | -0.52       | 0.57        | 0.00               | 43.6        | 80.0% |
| Adj %Warmwater Sp                 | 0.48          | -0.44       | 0.49        | -0.49       | 0.00               | 24.2        | 71.4% |
| Trophic                           |               |             |             |             |                    |             |       |
| Generalist % of Richness          | 0.69          | -0.53       | 0.68        | -0.61       | -0.42              | 56.2        | 88.0% |
| %NonTolerant Generalist Sp        | -0.35         | 0.35        | -0.37       | 0.37        | -0.35              | 27.3        | 85.7% |
| Tolerance                         |               |             |             |             |                    |             |       |
| %Tolerant Sp                      | 0.56          | -0.50       | 0.52        | -0.51       | 0.34               | 32.0        | 81.0% |
| Tolerance Index                   | 0.54          | -0.54       | 0.53        | -0.58       |                    | 56.4        | 92.0% |
| Intolerant % of Richness          | -0.46         | 0.54        | -0.54       | 0.62        |                    | 45.6        | 96.0% |
| Stream Flow                       |               |             |             |             |                    |             |       |
| %Lithophils-Wsucker               | -0.44         | 0.48        | -0.51       | 0.59        | -0.48              | 68.4        | 96%   |
| Non-native                        |               |             |             |             |                    |             |       |
| %Nonnative Top Carnivore Sp       | -0.19         | 0.21        | -0.19       | 0.23        | 0.25               | 5.8         | 66.7% |
| Composition                       |               |             |             |             |                    |             |       |
| %Dominant 3-Bdace                 | 0.47          | -0.32       | 0.44        | -0.46       | 0.30               | 33.7        | 88%   |
| Adj%Cyprinid                      | -0.49         | 0.51        | -0.54       | 0.56        | 0.00               | 62.0        | 88%   |
| Habitat                           |               |             |             |             |                    |             |       |
| Benthic Insectivore Sp            | -0.52         | 0.38        | -0.54       | 0.48        | 0.26               | 30.6        | 66.7% |
| Benthic Insectivore %Richness     | -0.50         | 0.46        | -0.54       | 0.52        | 0.24               | 50.3        | 96.0% |
| Benthic Insectivore Sp-TD         | -0.58         | 0.41        | -0.54       | 0.51        | 0.16               | 35.4        | 66.7% |
| NatNonTolBenthic Sp               | -0.52         | 0.42        | -0.56       | 0.55        | 0.11               | 37.9        | 76.2% |
| NatNonTolBenthic Sp-TD            | -0.49         | 0.44        | -0.55       | 0.58        | 0.02               | 42.4        | 76.2% |

# High Gradient Fish IBI Metrics

| Metric                                                                                                                                                                                                                    | Ecological<br>Class   | Response to stress | S:N    | F Statistic | % DE |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|--------|-------------|------|
| %Rheophilic Species-Tessellated Darter<br>(drainage corrected)ª                                                                                                                                                           | Taxonomic<br>Richness | Decrease           | 12.52  | 99.5        | 100  |
| %Cold/NonTolerant Coolwater Species<br>(drainage corrected) <sup>b</sup>                                                                                                                                                  | Thermal               | Decrease           | 12.07  | 43.6        | 80   |
| %Generalist Species <sup>a</sup>                                                                                                                                                                                          | Trophic               | Increase           | 6.49   | 56.2        | 88   |
| Tolerance Index                                                                                                                                                                                                           | Tolerance             | Increase           | 16.38  | 56.4**      | 92   |
| % Lithophilic Species-White Sucker <sup>a</sup>                                                                                                                                                                           | Reproduction          | Decrease           | 13.19  | 68.55+      | 96   |
| % Cyprinidae (drainage corrected) <sup>b</sup>                                                                                                                                                                            | Composition           | Decrease           | 11.29  | 62.0        | 88   |
| % Top 3 Dominant Species-Blacknose Dace <sup>b</sup>                                                                                                                                                                      | Composition           | Increase           | 7.50   | 33.7        | 88   |
| % Benthic Insectivore Speciesª                                                                                                                                                                                            | Habitat               | Decrease           | 15.95* | 50.3        | 96   |
| <sup>a</sup> Proportion of Species<br><sup>b</sup> Proportion of Individuals<br><sup>*</sup> Log <sub>10</sub> +1 transformation<br><sup>**</sup> Log <sub>10</sub> transformation<br>+ Arcsin square root transformation |                       |                    |        |             |      |

Discrimination efficiency (DE) is the capacity of the biological metric or index to detect stressed conditions. It is measured as the percentage of stressed sites that have values lower than the 25th percentile of reference values (Stribling et al. 2000).

# **Headwaters IBI Metrics**

| Metric                                                | Ecological Class      | Response to stress | S:N  | F statistic | % DE |
|-------------------------------------------------------|-----------------------|--------------------|------|-------------|------|
| Intolerant Vertebrate Richness                        | Taxonomic<br>Richness | Decrease           | 14.3 | 38.8        | 95   |
| Proportion of Vertebrate Richness as Top<br>Carnivore | Trophic               | Decrease           | 17.8 | 25.0        | 79   |
| % Tolerant Fish Individuals                           | Tolerance             | Increase           | 31.2 | 31.0        | 89   |
| Proportion of Total Richness as Native                | Non-Native            | Decrease           | 3.1  | 30.4        | 89   |
| % Native Crayfish                                     | Composition           | Decrease           | 3.2  | 43.1        | 100  |
| Brook Trout Density (individuals/100m²)               | Indicator<br>Species  | Decrease           | 1.6  | 7.1         | *    |

\*The 25th percentile for least disturbed sites was 0.00 for metric

# **IBI Metric Scoring**

#### Metrics which decrease with an increase in stress:

Score = 100 x Metric Value/95th Percentile\*

Example: Intolerant Vertebrate Richness = (Metric  $\div$  3) x 100

\*least & most impaired data

Metrics which **increase with an increase in stressor levels** were scored using the 5th percentile of least impaired as the upper limit using the formula:

Score =  $100 \times (95$ th Percentile – Metric Value)/(95th Percentile – 5th Percentile).

Example: % Tolerant Fish Individuals =  $(96.1 - \text{Metric})/(96.1 - 0) \times 100$ 

#### The total index score is derived from averaging all individual metric scores.

# Final Headwater IBI and Fish IBI score for each disturbance gradient



Overall mean HIBI and FIBI scores for most impaired and least impaired sites were significantly different (ANOVA, p ≤ 0.001)

### FIBI and HIBI relationship with urban landuse



Both IBI's responded positively to general stressor indicators and land use gradients, such as percent urban land use

# **FIBI Ratings**

| Assessment Rating | NIBI Score |
|-------------------|------------|
| Excellent         | 100-79     |
| Good              | 78-60      |
| Fair              | 59-38      |
| Poor              | 37-19      |
| Very poor         | 18-0       |



**Biological Condition Gradient Tier** 

### HIBI Ratings Assessment Rating HIBI Score Excellent 82-100 Good 51-81

| Good      | 51-81 |
|-----------|-------|
| Fair      | 29-50 |
| Poor      | 13-28 |
| Very poor | 0-12  |

# Summary

A new northern Fish IBI for larger wadeable streams was developed which is more sensitive and responsive to anthropogenic stressors

A new Headwaters IBI was developed to assess smaller order streams that are often low in fish richness and therefore cannot be accurately assessed solely with a fish based IBI

All wadeable (non tidal) freshwater steams north of the fall line can now be assessed for aquatic life use







# Article submission

Development of indices of biotic integrity for high-gradient wadeable rivers and headwater streams in New Jersey

John S. Vile<sup>a</sup> and Brian F. Henning<sup>a</sup>

<sup>a</sup>New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring, Trenton, NJ 08625, USA

### Journal of Ecological Indicators

• Currently under peer review

### Fish IBI John.Vile@dep.nj.gov

### **Questions?**

Headwaters IBI Brian.Henning@dep.nj.gov